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Express ions  are  derived for the diffusion cur ren t  and the corresponding coefficient of mass  
t ransfer  to solid spherical  par t ic les  in a constr ic ted s t ream of fluid with a low Reynolds 
number and a high Peclet  number. 

When simultaneously the Reynolds number is low Re = 2 a U / v  < 1 and the Peclet  number is high Pe 
= 2aU/D >> 1, then the s t ream around a par t ic le  can be treated in the Stokes approximation and the diffu '  
sive heat or  mass  t ransfer  to its surface can be analyzed in t e rms  of a diffusion boundary layer .  Many 
studies have been published with a solution to the equation of convective diffusion to a par t ic le  where Re 
< 1 and Pe >> 1. The gist of the methods used in those studies, however,  was either a t ransformat ion of 
this equation into the equation of plain diffusion as proposed by Levich [1] or  a modification of the Karman 
-Po lhausen  polynomial according to Akse l ' rud  for the diffusion boundary layer  [2]. 

Extending these methods to cases  with a high volume concentration of par t ic les  leads to difficulties 
in determining the flow field around individual par t ic les .  In studies on this subject [3-6] one has used the 
charac te r i s t i cs  of constr ic ted flow, on the basis  of various semiempir ica l  cel lular  models describing the 
flow of a fluid through a dense cloud of par t ic les .  In this ar t ic le  the problem of diffusion to a par t ic le  will 
be solved on the bas is  of more  r igorous stipulations concerning a constr ic ted flow, a r r ived  at by the meth-  
od shown in [7-8]. 

The equation of convective diffusion, with axial symmet ry  of the p roces s  taken into account, is in 
spherical  coordinates (the cr i t ical  point at the par t ic le  surface has the coordinate 0 = 0) 

vr-~-r +-- -~r -~ sin0 00 -O-(lJ 
with v r and v 0 denoting the velocity components. Assuming, for simplicity,  that mass  is absorbed at the 
par t ic le  surface at a high rate,  we can write the boundary conditions for Eq. (1) as 

c----c o (r--~c~; r = a ,  0 = 0 ) ,  c = O ( r = a ,  0=~0), (2) 

with c o denoting the concentration of the substance in the oncoming s t ream.  

If one considers  that the diffusion boundary layer  is thin (its thickness is h(O) << a everywhere except, 
perhaps,  in the vicinity of the s tern point 0 = ~), the tangential derivatives within this layer  are  negligible 
in compar ison with the radial  derivat ives and Eq. (1) becomes  

Oc v o 0c 0% 
v ~ - - ~ +  a O0 ~ D  ~2  ' r = a + ~ ,  O<~<h(O)<<a .  (3) 

Using the resul ts  in [7], in o rder  to make the problem determinate,  we express  the velocity v0 and 
the flow function $ near the surface of a part icle  in the approximate form 

3 
Vo ~-. - -  ~ U ,  s in  O, ~ ..~ _ 3 U , ~  sin~ O, U, = AU, (4) 
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where A is a function of the volume concentrat ion p and of the cloud dispersivi ty  

A= (1+8(p, ~)), ~ 223p - - -2  p b-~-~ + T O b3 / + - 2 '  -~-~/' 

4 ~ aB(p (a) da , bin S at~(p (~z) d~, (5) P-~ 3 ~ a  

with n denoting the numerical  concentration of par t ic les  and ~o (a) the normal - s i ze  distribution function of 
par t ic le  s. 

When p ~ 0, Eq. (5) yields/3 ~ ~fp. In the special  case of a monodisperse  cloud b m -- a m and 

1 3 , 
- ~  - p), (6) 

With the aid of (4) it is not difficult to replace r (or ~) by a new independent variable @ and to t r ans -  
form the boundary conditions (2) as well as Eq. (3) accordingly.  The solution to the result ing boundary-  
value problem does not differ in any way f rom the solution to the s ingle-par t ic le  problem in [1], if the 
relat ive velocity U is replaced by U ,  f rom expression (4). As a result ,  we have for the local and the 
integral  diffusion current  at the surface of a par t ic le  

i(0)==D - ~  t=0 \ ~ /  Co (0--1t2 sin 20) 1/3 ' 

and 

J =: 2"na~ .f j (0) sin 0d0 = 7.98 (D2AUa~)  l/a , (7) 
0 

respect ively .  

The thickness of the diffusion boundary layer  is 

{ Da~ 11/3 (0-- 1/2 sin 20),/3 
a (0) = 1,27 k - ~ - -  ] si---n ~ "  (8) 

As a resul t  of a constr ic ted flow with Re < 1 and Pe >> 1, therefore,  the diffusion cur ren t  to a p a r -  
ticie becomes A 1/a t imes l a rge r  and the thickness of the diffusion boundary l ayer  becomes  A 1/3 t imes 
sma l l e r  than in the case of a single par t ic le ,  with A defined according to expressions (5) and (6). When 
p -~ 0, we have A -'- 1 and formulas  (7)-(8) become the corresponding ones in [1]. 

Introducing the Sherwood number  Sh = 2ak/D, where k is the integral mass  t ransfer  coefficient de- 
fined as the rat io of cur ren t  J to the quantity 4va2c0, we obtain f rom (7) the c r i te r ia l  relation 

S = B P  1/3 , B = 0,998A 1/3 . (9) 

The diffusion current  J can also be calculated by the polynomial method. Namely, integrating (1) or  
(3) with respec t  to ~ f rom 0 to h(0), one can obtain the condition of mater ia l  balance in the diffusion layer  
(at ~ = h(0) the concentrat ion is c = Co), express  the concentration of a substance as a polynomial in t e rms  
of the }/h(0) ratio,  and determine the polynomial coefficients so as to satisfy the boundary conditions [2, 6]. 
This method, the shor tcomings  of which have been discussed in [1], leads to the ea r l i e r  derived relation 
(9) between the Sherwood number and the Peclet  number,  but coefficient I3 is here 

B = 1~037 A I/3 . (10) 

The relat ions derived in [3-6] for  par t ic les  of a monodisperse  cloud are  of the same form as (9), but 
there 

1 ~ p 5/3 ) ~/3 
B = K  l+3 /2pS /3 - -P~ /a (3 /2+P  s/s) , (11) 

and the numerical  coefficient K in (11) is equal to 1.19 according to Ruckenstein [3], 0.998 according to 
Pfeffer  [4] or  Walso and Gat-Or [5], and 1.037 according to Yaron and Gal-Or [6]. 

The resul t s  obtained here  are  valid for fine par t ic les  (Re < 1). Their  extension to cases  with the 
Reynolds number somewhat higher than unity is fraught with difficulties (in the case of single part icles)  
ar is ing in the descript ion of the flow near a par t ic le  in te rms  of adjoint asymptotic  expansions. For  p a r -  
t i d e s  in a r a the r  dense cloud, however,  the resul ts  obtained in the Re < 1 approximation should be valid 
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also at higher  values  of the Reynolds number  (Re = 10-100). This has  to do with a much sof ter  separa t ion  
of the boundary l aye r  fo rmed  during the flow through a dense cloud of pa r t i c l e s  than in the case  of single 
pa r t i c l e s .  This  si tuation has been d iscussed  and i l lus t ra ted  with some tes t  data in [4, 5]. It has a lso  been  
conf i rmed by d i rec t  observa t ions  of the flow through a c lose-packed  cubic lat t ice of spheres  in [9], a cco rd -  
ing to which an effect ive separa t ion  of the boundary l ayer  occurs  only at Re = 90-120. It does not s e e m  to 
be pa r t i cu la r ly  meaningful,  there fore ,  to exp re s s  the in tegra l  diffusion cur ren t  J through a dense cloud in 
t e r m s  of a s e r i e s  in Re - as is done in the case  of single pa r t i c l e s .  

N O T A T I O N  

A is  a quantity defined by Eq. (5); 
a is the radius  of a par t i c le ;  
B is the coefficient  in fo rmula  (9); 
b m a re  the moments  of function ~(a) ;  
c is the concentrat ion;  
D is the molecu la r  diffusivity; 
J is the in tegral  diffusion cu r ren t  at the sur face  of a spher ica l  par t ic le ;  
j is the local  diffusion current ;  
h is the thickness  of the diffusion boundary layer ;  
K is the coefficient  in formula  (11); 
k is the in tegra l  m a s s  t r a n s f e r  coefficient;  
Pe is the Pec le t  number;  
Re is the Reynolds number ;  
Sh is  the Sherwood number ;  
U is the re la t ive  velocity;  
U ,  is the veloci ty  as defined in Eq. (4); 
v is the local  veloci ty  of the fluid; 

is the coefficient  in Eq. (5); 
i s  the k inemat ic  v iscos i ty ;  

p is  the volume concentrat ion of pa r t i c l e s ;  
is the s ize (radius) distr ibution function of pa r t i c l e s ;  

~b is the flow function. 
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