CONVECTIVE DIFFUSION TO SOLID SPHERICAL
PARTICLES IN A DENSE POLYDISPERSE CLOUD

Yu. A. Buevich UDC 532.73-3

Expressions are derived for the diffusion current and the corresponding coefficient of mass
transfer to solid spherical particles in a constrmted stream of fluid with a low Reynolds
number and a high Peclet number.

When simultaneously the Reynolds number is low Re = 2aU/v < 1 and the Peclet number is high Pe
=2aU/D > 1, then the stream around a particle can be treated in the Stokes approximation and the diffu-
sive heat or mass transfer to its surface can be analyzed in terms of a diffusion boundary layer. Many
studies have been published with a solution to the equation of convective diffusion to a particle where Re
<1 and Pe > 1. The gist of the methods used in those studies, however, was either a transformation of
this equation into the equation of plain diffusion as proposed by Levich [1] or a modification of the Karman
—Polhausen polynomial according to Aksel'rud for the diffusion boundary layer [2].

Extending these methods to cases with a high volume concentration of particles leads to difficulties
in determining the flow field around individual particles. In studies on this subject {3-6] one has used the
characteristics of constricted flow, on the basis of various semiempirical cellular models describing the
flow of a fluid through a dense cloud of particles. In this article the problem of diffusion to a particle will
be solved on the basis of more rigorous stipulations concerning a constricted flow, arrived at by the meth-
od shown in [7-8].

The equation of convective diffusion, with axial symmetry of the process taken into account, is in
spherical coordinates (the critical point at the particle surface has the coordinate 6 = 0)
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with v,. and vy denoting the velocity components. Assuming, for simplicity, that mass is absorbed at the

particle surface at a high rate, we can write the boundary conditions for Eq. (1) as

c=2¢y (t—>o0; r=a 0=0), c=0(r=a, 65£0), (2)

with ¢y denoting the concentration of the substance in the oncoming stream.

If one considers that the diffusion boundary layer is thin (its thickness is h(f) < a everywhere except,
perhaps, in the vicinity of the stern point 8 = ), the tangential derivatives within this layer are negligible
in comparison with the radial derivatives and Eq. (1) becomes
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Using the results in [7], in order to make the problem determinate, we express the velocity vg and
the flow function { near the surface of a particle in the approximate form
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where A is a function of the volume concentration p and of the cloud dispersivity

’ B2 . 9 b
= (1 -2 13 )Ll 81 z<,_2_) ] +_p_i},
A={1+Blp 9) b= {[18;)( 20 e T A

p= —45 an ya"tp (@)da, b, = ja'”@ (a) da, ()

with n denoting the numerical concentration of particles and ¢ (a) the normal-size distribution function of
particles.

When p — 0, Eq. (5) yields 8 ~ Vp. In the special case of a monodisperse clol_ld by =a™ and
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With the aid of (4) it is not difficult to replace r {or ¢) by a new independent variable ) and to trans-
form the boundary conditions (2) as well as Eq. (3) accordingly. The solution to the resulting boundary-
value problem does not differ in any way from the solution to the single-particle problem in [1], if the
relative velocity U is replaced by U, from expression (4). As a result, we have for the local and the
integral diffusion current at the surface of a particle
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and
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respectively.

The thickness of the diffusion boundary layer is
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As a result of a constricted flow with Re < 1 and Pe > 1, therefore, the diffusion current to a par-
ticle becomes A% times larger and the thickness of the diffusion boundary layer becomes Al/3 times
smaller than in the case of a single particle, with A defined according to expressions (5) and (6). When
p — 0, we have A — 1 and formulas (7)-(8) become the corresponding ones in [1].

Introducing the Sherwood number Sh = 2¢k/D, where k is the integral mass transfer coefficient de-
fined as the ratio of current J to the quantity 41ra200, we obtain from (7) the criterial relation

S=BP3, B=099841", (9)

The diffusion current J can also be calculated by the polynomial method. Namely, integrating (1) or
(3) with respect to £ from 0 o h(f), one can obtain the condition of material balance in the diffusion layer
(at £ = h(@) the concentration is ¢ = ¢(), express the concentration of a substance as a polynomial in terms
of the £/h(6) ratio, and determine the polynomial coefficients so as to satisfy the boundary conditions |2, 6].
This method, the shortecomings of which have been discussed in [1], leads to the earlier derived relation
(9) between the Sherwood number and the Peclet number, but coefficient B is here

B=1.037 A (10)

The relations derived in [3-6] for particles of a monodisperse cloud are of the same form as (9), but
there
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and the numerical coefficient K in (11) is equal to 1.19 according to Ruckenstein [3], 0.998 according to
Pfeffer [4] or Walso and Gal-Or [5}, and 1.037 according to Yaron and Gal-Or [6].

The results obtained here are valid for fine particles (Re < 1). Their extension to cases with the
Reynolds number somewhat higher than unity is fraught with difficulties (in the case of single particles)
ariging in the description of the flow near a particle in terms of adjoint asymptotic expansions. For par-
ticles in a rather dense cloud, however, the results obtained in the Re < 1 approximation should be valid
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also at higher values of the Reynolds number (Re = 10-100). This has to do with a much softer separation
of the boundary layer formed during the flow through a dense cloud of particles than in the case of single
particles. This situation has been discussed and illustrated with some test data in [4, 5]. It has also been
confirmed by direct observations of the flow through a close~packed cubic lattice of spheres in [9], accord-
ing to which an effective separation of the boundary layer occurs only at Re = 90-120. It does not seem to
be particularly meaningful, therefore, to express the integral diffusion current J through a dense cloud in
terms of a series in Re — as is done in the case of single particles.

NOTATION

A is a quantity defined by Eq. (5);
a is the radius of a particle;
B is the coefficient in formula (9);
by are the moments of function ¢ (a};
c is the concentration;
D is the molecular diffusivity;
J is the integral diffusion current at the surface of a spherical particle;
j is the local diffusion current;
h is the thickness of the diffusion boundary layer;
K is the coefficient in formula (11);
k is the infegral mass transfer coefficient;
Pe is the Peclet number;
Re is the Reynolds number;
Sh  is the Sherwood number;
U is the relative velocity;
U,  is the velocity as defined in Eq. (4);
v is the local velocity of the fluid;
B is the coefficient in Eq. (5);
v is the kinematic viscosity;
p is the volume concentration of particles;
@ is the size (radius) distribution function of particles;
P is the flow function.
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