CONVECTIVE DIFFUSION TO SOLID SPHERICAL

PARTICLES IN A DENSE POLYDISPERSECLOUD

Yu. A. Buevich
UDC 532.73-3

Expressions are derived for the diffusion current and the corresponding coefficient of mass transfer to solid spherical particles in a constricted stream of fluid with a low Reynolds number and a high Peclet number.

When simultaneously the Reynolds number is low $\operatorname{Re}=2 a \mathrm{U} / \nu<1$ and the Peclet number is high Pe $=2 a \mathrm{U} / \mathrm{D} \gg 1$, then the stream around a particle can be treated in the Stokes approximation and the diffusive heat or mass transfer to its surface can be analyzed in terms of a diffusion boundary layer. Many studies have been published with a solution to the equation of convective diffusion to a particle where Re <1 and $\mathrm{Pe} \gg 1$. The gist of the methods used in those studies, however, was either a transformation of this equation into the equation of plain diffusion as proposed by Levich [1] or a modification of the Karman -Polhausen polynomial according to Aksel'rud for the diffusion boundary layer [2].

Extending these methods to cases with a high volume concentration of particles leads to difficulties in determining the flow field around individual particles. In studies on this subject [3-6] one has used the characteristics of constricted flow, on the basis of various semiempirical cellular models describing the flow of a fluid through a dense cloud of particles. In this article the problem of diffusion to a particle will be solved on the basis of more rigorous stipulations concerning a constricted flow, arrived at by the method shown in [7-8].

The equation of convective diffusion, with axial symmetry of the process taken into account, is in spherical coordinates (the critical point at the particle surface has the coordinate $\theta=0$)

$$
\begin{equation*}
v_{r} \frac{\partial c}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial c}{\partial \theta}=\frac{D}{r^{2}}\left[\frac{\partial}{\partial r}\left(r^{2} \frac{\partial c}{\partial r}\right) \div \frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial c}{\partial \theta}\right)\right] \tag{1}
\end{equation*}
$$

with v_{r} and v_{θ} denoting the velocity components. Assuming, for simplicity, that mass is absorbed at the particle surface at a high rate, we can write the boundary conditions for Eq. (1) as

$$
\begin{equation*}
c=c_{0}(r \rightarrow \infty ; r=a, \theta=0), \quad c=0(r=a, \theta \neq 0) \tag{2}
\end{equation*}
$$

with c_{0} denoting the concentration of the substance in the oncoming stream.
If one considers that the diffusion boundary layer is thin (its thickness is $h(\theta) \ll a$ everywhere except, perhaps, in the vicinity of the stern point $\theta=\pi$), the tangential derivatives within this layer are negligible in comparison with the radial derivatives and Eq. (1) becomes

$$
\begin{equation*}
v_{r} \frac{\partial c}{\partial \xi}+\frac{v_{\theta}}{a} \frac{\partial c}{\partial \theta} \approx D \frac{\partial^{2} c}{\partial \xi^{2}}, \quad r=a+\xi, \quad 0 \leqslant \xi \leqslant h(\theta) \ll a . \tag{3}
\end{equation*}
$$

Using the results in [7], in order to make the problem determinate, we express the velocity v_{θ} and the flow function ψ near the surface of a particle in the approximate form

$$
\begin{equation*}
v_{\theta} \approx \frac{3}{2}-\frac{\xi}{a} U_{*} \sin \theta, \quad \psi \approx-\frac{3}{4} U_{*} \xi^{2} \sin ^{2} \theta, \quad U_{*}=A U \tag{4}
\end{equation*}
$$

Institute of Problems in Mechanics, Academy of Sciences of the USSR, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 23, No. 4, pp. 709-712, October, 1972. Original article submitted February 4, 1972.

- 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.
where A is a function of the volume concentration ρ and of the cloud dispersivity

$$
\begin{gather*}
A=(1 \div \beta(\rho, \varphi)), \quad \beta=\frac{a}{2-3 \rho}\left\{\left[18 \rho\left(1-\frac{3}{2} \rho\right) \frac{b_{1}}{b_{3}}+\frac{81}{4} \rho^{2}\left(\frac{b_{2}}{b_{3}}\right)^{2}\right]^{1 / 2}+\frac{9}{2} \rho \frac{b_{2}}{b_{3}}\right\}, \\
\rho=\frac{4}{3} \pi n \int a^{3} \varphi(a) d a, \quad b_{m}=\int a^{m} \varphi(a) d a \tag{5}
\end{gather*}
$$

with n denoting the numerical concentration of particles and $\varphi(a)$ the normal-size distribution function of particles.

When $\rho \rightarrow 0$, Eq. (5) yields $\beta \sim \sqrt{\rho}$. In the special case of a monodisperse cloud $\mathrm{b}_{\mathrm{m}}=\boldsymbol{a}^{\mathrm{m}}$ and

$$
\begin{equation*}
\beta=\frac{1}{2-3 \rho}\left\{\left[18 \rho\left(1-\frac{3}{2} \rho\right)+\frac{81}{4} \rho^{2}\right]^{1 / 2} \div \frac{9}{2} \rho\right\}, \tag{6}
\end{equation*}
$$

With the aid of (4) it is not difficult to replace r (or ξ) by a new independent variable ψ and to transform the boundary conditions (2) as well as Eq. (3) accordingly. The solution to the resulting boundaryvalue problem does not differ in any way from the solution to the single-particle problem in [1], if the relative velocity U is replaced by U_{*} from expression (4). As a result, we have for the local and the integral diffusion current at the surface of a particle

$$
j(\theta)=D\left(\frac{\partial c}{\partial \xi}\right)_{\xi=0}=0.79\left(\frac{A U D^{2}}{a^{2}}\right)^{1 / 3} c_{0} \frac{\sin \theta}{(\theta-1 / 2 \sin 2 \theta)^{1 / 3}}
$$

and

$$
\begin{equation*}
J=2 \pi a^{2} \int_{0}^{\pi} j(\theta) \sin \theta d \theta=7.98\left(D^{2} A U a^{4}\right)^{1 / 3} \tag{7}
\end{equation*}
$$

respectively.
The thickness of the diffusion boundary layer is

$$
\begin{equation*}
h(\theta)=1.27\left(\frac{D a^{2}}{A U}\right)^{1 / 3} \frac{(\theta-1 / 2 \sin 2 \theta)^{1 / 3}}{\sin \theta} . \tag{8}
\end{equation*}
$$

As a result of a constricted flow with $\mathrm{Re}<1$ and $\mathrm{Pe} \gg 1$, therefore, the diffusion current to a particle becomes $A^{1 / 3}$ times larger and the thickness of the diffusion boundary layer becomes $A^{1 / 3}$ times smaller than in the case of a single particle, with A defined according to expressions (5) and (6). When $\rho \rightarrow 0$, we have $A \rightarrow 1$ and formulas (7)-(8) become the corresponding ones in [1].

Introducing the Sherwood number $S h=2 a \mathrm{k} / \mathrm{D}$, where k is the integral mass transfer coefficient defined as the ratio of current J to the quantity $4 \pi a^{2} c_{0}$, we obtain from (7) the criterial relation

$$
\begin{equation*}
\mathrm{S}=B P^{1 / 3}, \quad B=0.998 A^{1 / 3} \tag{9}
\end{equation*}
$$

The diffusion current J can also be calculated by the polynomial method. Namely, integrating (1) or (3) with respect to ξ from 0 to $h(\theta)$, one can obtain the condition of material balance in the diffusion layer (at $\xi=\mathrm{h}(\theta)$ the concentration is $\mathrm{c}=\mathrm{c}_{0}$), express the concentration of a substance as a polynomial in terms of the $\xi / \mathrm{h}(\theta)$ ratio, and determine the polynomial coefficients so as to satisfy the boundary conditions [2, 6]. This method, the shortcomings of which have been discussed in [1], leads to the earlier derived relation (9) between the Sherwood number and the Peclet number, but coefficient B is here

$$
\begin{equation*}
B=1,037 A^{1 / 3} \tag{10}
\end{equation*}
$$

The relations derived in [3-6] for particles of a monodisperse cloud are of the same form as (9), but there

$$
\begin{equation*}
B=K\left(\frac{1-\rho^{5 / 3}}{1+3 / 2 \rho^{5 / 3}-\rho^{1 / 3}\left(3 / 2+\rho^{5 / 3}\right)}\right)^{1 / 3}, \tag{11}
\end{equation*}
$$

and the numerical coefficient K in (11) is equal to 1.19 according to Ruckenstein [3], 0.998 according to Pfeffer [4] or Walso and Gal-Or [5], and 1.037 according to Yaron and Gal-Or [6].

The results obtained here are valid for fine particles ($\mathrm{Re}<1$). Their extension to cases with the Reynolds number somewhat higher than unity is fraught with difficulties (in the case of single particles) arising in the description of the flow near a particle in terms of adjoint asymptotic expansions. For particles in a rather dense cloud, however, the results obtained in the $\mathrm{Re}<1$ approximation should be valid
also at higher values of the Reynolds number ($\operatorname{Re}=10-100$). This has to do with a much softer separation of the boundary layer formed during the flow through a dense cloud of particles than in the case of single particles. This situation has been discussed and illustrated with some test data in [4, 5]. It has also been confirmed by direct observations of the flow through a close-packed cubic lattice of spheres in [9], according to which an effective separation of the boundary layer occurs only at $R e=90-120$. It does not seem to be particularly meaningful, therefore, to express the integral diffusion current J through a dense cloud in terms of a series in Re - as is done in the case of single particles.

NOTATION

A is a quantity defined by Eq. (5);
$a \quad$ is the radius of a particle;
$B \quad$ is the coefficient in formula (9);
b_{m} are the moments of function $\varphi(a)$;
c is the concentration;
D is the molecular diffusivity;
$J \quad$ is the integral diffusion current at the surface of a spherical particle;
$j \quad$ is the local diffusion current;
$h \quad$ is the thickness of the diffusion boundary layer;
$\mathrm{K} \quad$ is the coefficient in formula (11);
$\mathrm{k} \quad$ is the integral mass transfer coefficient;
$\mathrm{Pe} \quad$ is the Peclet number;
Re is the Reynolds number;
Sh is the Sherwood number;
U is the relative velocity;
$\mathrm{U}_{*} \quad$ is the velocity as defined in Eq. (4);
$v \quad$ is the local velocity of the fluid;
$\beta \quad$ is the coefficient in Eq. (5);
$\nu \quad$ is the kinematic viscosity;
$\rho \quad$ is the volume concentration of particles;
$\varphi \quad$ is the size (radius) distribution function of particles;
$\psi \quad$ is the flow function.

LITERATURE CITED

1. V. G. Levich, Physicochemical Hydrodynamics [in Russian], Fizmatgiz, Moscow (1959).
2. G. A. Aksel'rud, Zh. Fiz. Khim., 27, No. 1 (1953).
3. E. Ruckenstein, Chem. Eng. Sci., 19, 131 (1964).
4. R. Pfeffer, Ind. Eng. Che. Fund., 3, 380 (1964).
5. S. Waslo and B. Gal-Or, Chem. Eng. Sci., 26, 829 (1971).
6. I. Yaron and B. Gal-Or, Internatl. J. Heat and Mass Transfer, 14, 727 (1971).
7. C. K. W. Tam, J. Fluid Mech., 38, 537 (1969).
8. Yu. A. Buevich, Izv. Akad. Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5 (1971).
9. T. H. Wegner, A. J. Karabelas, and T. J. Hanratty, Chem. Eng. Sci., 26, 59 (1971).
